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Numer ica l ly  ob ta ined  f requency response  funct ions  for  var ious  electrochemical  veloci ty and shear 
stress p robes  used in h y d ro d y n amica l  measuremen t s  are presented.  

1. Introduction 

The inertia of electrochemical probes is due to 
the ionic convective diffusion processes to or 
from the electrode surface. For estimation and 
correction of this inertia it is necessary to calcu- 
late the frequency response function (FRF) of 
the probe. F R F  is the ratio of two complex ampli- 
tudes, output amplitude to input amplitude. This 
characteristic may be introduced only for linear 
systems. Therefore the governing equations were 
linearized for the calculation of FRF.  The lineariz- 
ation is valid provided all fluctuations are small com- 
pared to their mean values. The F R F  was calculated 
for spherical, cylindrical, 'tip point' velocity probes 
and also for rectangular, circular and split circular 
shear stress sensors. The results of  calculation for the 
F R F  are given in the form of approximate formulae. 
The F R F  expressions may be used to correct probe 
signals. 

2. Inertia of  the velocity probes 

If the turbulence intensity is not very high the operation 
of electrochemical velocity and shear stress probes can 
be described by linearized equations of convective 
diffusion 

~2c 
(u" V)c = D - -  Oy 2 (1) 

&, a2c ' 
0-7 + (u -g ) c '  + (u ' -V)c  = D ~y--T (2) 

where D is the diffusion coefficient, c, c', u, u' are the 
average and fluctuating concentrations of  control ions 
and velocities, respectively, y is the coordinate normal 
to the electrode surface. 

Inertial properties of linear systems are described 
by the so called complex frequency response 
function (FRF), which is determined by the ratio 
of two complex amplitudes of  output and input 
signals 

Aout(O~) H(~o) -- (3) 
Ain(O~) 

Here a dimensionless normalized F R F  determined 

by the formula 

/}(co) = n(~o) _ Aout(~o ) Am(0) (4) 
H(0) Ao,t(0) Ai, (~o) 

is use& 
The modulus of the function/~(~o) shows damping 

of  the signals due to viscosity and diffusivity effects. 
The argument of the function/~(eo) gives the phase lag 
between output and input signals. For velocity probes 
the input signal is, of course, the fluctuation of  liquid 
velocity in the vicinity of  the probe, g_.7. For shear stress 
probes the input signal is the wall shear stress fluctu- 
ation, L The output signal is always the fluctuation of  
the diffusion current, / .  

Velocity fields around a sphere and a cylinder in 
a flow with imposed oscillations were calculated by 
Illingworth [3] for small Reynolds number (the Stokes 
approach). Fluctuating currents for a sphere and a 
cylinder were calculated in [1, 2] at large Peclet number 
in a boundary layer approach. It is convenient to 
present the F R F  for velocity probes as a product of 
two multipliers, the hydrodynamic and diffusion parts 
of FRF  

H,(oo) = ~oo(co), Hd(~O) -- {(~o) (5) 

where {(~o) is the shear stress fluctuation averaged 
over the probe surface. 

The hydrodynamic part of the FRF can be obtained 
from Illingworth [3]: 
(a) for a sphere 

R e ( 1  + 8i& - (1 + 4i&)'/2"~ 
/~h = 1 + 8 " _  1 7 0 - ~  4]-&~ 7~ ] (6) 

(b) for a cylinder 

- [ 4i60 - ( 1  + 4i60)In (1 + 4i60)]-' 
H~Y' = L1 + 8i&(l -- In Re) 

_1 

(7) 

where 60 = oov/U 2, Re = Uoo d/v 4~ 1, d is the probe 
diameter, Uoo is the mean flow velocity, v is liquid 
viscosity. According to [3] Equations 6 and 7 are valid 
for the frequency domain gore < 1. 

An approximate formula for the diffusion part of 

* This paper was presented at the Workshop on Electrodiffusion Flow Diagnostics, CHISA, Prague, August 1990. 
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the FRF for a sphere was obtained in [1] 

1 + 1.9 x 10-30-  2 7/4 
I + 1.3 x 1 0 - 2 0  -2 -I- 3.5 x 10-50- 4 j  

(8) 

arg (/td) 

= --1.5 arctan [0.117 x a(1 + 7.5 x 10-4a2)] 

(9) 

where 0- = (e)/D)[Dd2/U~Ao] 2/3, Ao = 1 + 3Re~16. 
It was found in [1] that the diffusion part of the FRF  

for a cylinder can be expressed through the spherical 
F R F / t d  by the formula 

/~Yl ( OJ ) = /td (1.16a') (10) 

where 0-' = (colD)[Dd21U~Bo] 2i3,/70 = (2 - In Re) -l . 
Expressions 8-10 are valid for all 0- and 0-'. 
Spectral amplitudes of fluctuating flow velocities 

U~ (co) and currents [(co) are connected by formulae [1] 
(a) for a sphere 

[(co) 0~(~o) ( 3Re~ /~h ( ( .~ ) /~d (O. . )  (11) 
so - 3uoo 1 + - - T g - )  

(b) for a cylinder 

I 0 - 3 Uoo 1 + 1 - In Re g~yl (~))/~Y[ (O'f) 

(12) 

where I0 is the average probe current. 
Another approach (the boundary layer approach) 

which is valid at Re >> 1 was used for the calculation 
of the hydrodynamic part of FRF  for the so called 
'tip point' velocity probe [1] (Fig. lc). The approxi- 

/ 
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k . . . .  

q5 ~ --'7"- 2 
i ( b )  
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0 20  4O d 0 

Fig. 2. FRF for spherical velocity probes: (a) modulus of FRF, 
(b) argument of FRF, 

(c)  Fig. l. Various shapes of velocity probes. 

mations for the FRF  of this probe are 

t/thf ---- (1 -I- CO2 /15),14 + 

arg ( /~h)  = 0.5 arctan (0.256 co+) 

(13) 

(14) 

1 + 2.32 x 10-3(.o 2 / 3/4 

liqdl = 1 + 4.45 X 10-2CO2 + 1.49 X 10 40.)4 

(15) 
arg (/ta) 

= - l . 5a rc t an [0 .211  x co (1 + 2.04 x 10 3~o2)] 

(16) 

where co+ = (co/ao), co_ = (co/ao)[v/D] ~/3, ao = kU~/  
d, k is a probe shape constant (2 < k < 4) obtained 
in [1 ] from the potential flow solution. The FR F of the 
'tip point' velocity probe is shown on Fig. 3. 

3. Iner t ia  o f  the  shear  s tress  probes  

For shear stress probes only the diffusion FRF needs 
to be calculated [1, 2, 4]. New variables can be 
introduced 

( 2 7 0  ~l/3 (~2(X __ XI)2)1/'3 
= Y (x  - x , ) ~ D  / ' ~ = co ;r 

h = - -  (17) 
c~ dz 

where # = pv is the viscosity of the liquid, (x - x~) 
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Fig. 3. FRF for "tip nose" velocity probes: (Hh) hydredynamic 
FRF, (Hd) diffusion FRF. 
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is the distance from the upper boundary of the probe 
electrode, z0 is the mean shear stress on the probe, 
~,.=(co) is the fluctuation amplitude of the two com- 
ponents of the shear stress vector. The modified density 
of the fluctuating mass fluxj '  = (#h/0q),:0 was calcu- 
lated using the boundary layer approach (Fig. 4 shows 
amplitude and phase lag o f f ) .  Further integration of 
j '  over probe surfaces of various shapes produced a 
FRF for 
(a) a rectangular electrode (Fig. 5a) 

3 f~oj,(~)d~ (18) tt(0.) = 

(b) a circular electrode (Fig. 5c) 

3 
H+(a) = ~ fo (0.3 _ ~3)~/2j,(~)d ~ (19) 

(c) a differential electrode composed of two halves of 
a disc (Fig. 5c) 

~ ( 0 . )  = 3 fo (0.3/2 _ ~3/2) j , ( ~ ) d ~  (20) 20.5/----7 

where 0. = ~oT is a dimensionless frequency, T is a 
characteristic time constant determined below. Nor- 
malized FRF were calculated from Equations 18-20. 

Fig. 4. Modified density of the fluctuating mass flux 
7ff j '  = (dh/dr/)0: (a) modulusj ' ,  (b) argument j ' .  

Results are shown in Fig. 6 and can be summarized 
by the approximate formulae expressed in Equations 
21-28: 
(a) for a < 6 

In~t = (1 + 0.049 a 2 + 0.0006 a4) -~/2 (21) 

I/It = (1 + 0.056 a 2 + 0.00126 04) -1/2 (22) 

arg (9,.) 

= - arctan [0.242 0.(1 + 0.0124 0.2 _ 0.00015 0.4)] 

(23) 

rg (H) 

-= - arctan [0.276 0.(1 + 0.02 0.2 _ 0.00026 0.4)] 

(24) 

(b) for a >i 6 

,iq~] 4"411 1.7 1~_3 J,/2 
�9 = - 7  (a) '/2 + (25) 

i/_71 3.711 l., ~]+/2 = - 7  (a)l/z + (26) 

arg (/]~) = - arctan (1.16(a) 1/2 - 1) (27) 

k,\\\% 

a2 
( a )  (b)  ( c )  

Fig. 5. Various types of shear stress probes: (a) 
rectangular, (b) A-shape, (c) split circular electrode. 
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arg (/1) = - arctan (1.32(cr) 1/2 - 1). (28) 

All the approximate formulae have a deviation 
from the calculated value of not more than 1%. 

Convenient formulae can be obtained for correction 
of probe signals for the three shapes shown in Fig. 5. 
These are 

~,.(co) = 3 _T(co) (Fig. 5a) (29) 
z o IoH(coT") 

- 3 (Fig. 5b) (30) 
To lo lrI ( o) T ') 

{x(c~ - 3.82 ~(~)  + ~(~o) (Fig. 5c) (31) 
ro Iot7I~(o~ T) 

L.(@ T, (@ - ~ (o) 
- 5.36 (Fig. 5c) (32) 

To IoE(~oT) 

where I0 is the average probe current, ~,2(o9), 7(09) are 
the fluctuation amplitudes of currents from different 
parts of the probe. Characteristic time constants of the 
probes from Equations 29-32 are 

( tz; d2 ~W3 T' ( f l 2 ~,/3 

r , ,  = \ ~ )  ( 3 3 )  

where 20 is the angle between two thin strip electrodes 
(Fig. 5b). There is a possibility of determining the time 
constants in Equation 33 from non-stationary currents 
which occur in switch processes of electrodes when a 
step change in electrochemical potential is applied. 
The curves shown in Fig. 7 were calculated in [1] (and 
also [7]) by using analytical expressions for local mass 

Fig. 6. Modulus and argument of FRF for shear stress probes: 
(1) rectangular, (2) circular electrode, (3) circular z-pulsation 
probe, (e) FRF from Hanratty & Chorn [51. 

flux density,j(x, t), extracted from the solution of the 
transient Leveque problem given in [6]. Curve 1 shows 
the dependence of the ratio j (x ,  t)/j(x, ~ )  on non- 
dimensional time 7 =  t ( f ( x -  x~)2i(Dr2)) -li3. The 
relative current for the probe of rectangular shape is 
shown by curve 2, Fig. 7, and is given by formula 

( ,  -o,3 

I(oo) t , ~ /  _lJ 
and for the circular electrode (curve 3, Fig. 7) by the 
expression 

s(oo) 
There is no need to determine separately values of 

D, T 0, p, l and d, which characterize the time constants 
T, T', T" of the probes, because these constants can be 

Ic~) ~ . . . . .  

I ( o~) 

2 7 

o o,~ r t_,~ 
T 

Fig. 7. Transient currents in switching process: (1) for density of 
mass flux, (2) for rectangular, (3) for circular electrode. 
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easily determined from Equations 34 and 35 for the 
transient process. 

If the FRF is used to correct the signal the frequency 
range of probe operation may be expanded by a factor 
of 10. The expressions represented by Equations 29- 
32 are, of course, for spectral measurements. But if the 
FRF of the probe is known, a numerical algorithm for 
correction of real (on line) signals can be constructed. 
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